USN ## Sixth Semester B.E. Degree Examination, June/July 2015 Aircraft Performance Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, selecting atleast TWO questions from each part. ## PART - A - 1 a. What is drag polar? Derive the drag polar equation for an airplane. Show graphical representation. (10 Marks) - b. Define the terms aerodynamic center and center of pressure and derive an expression to locate the aerodynamic center. (10 Marks) - 2 a. Consider an airplane at steady, level flight and it's a function of altitude, velocity and weight. For the above said condition show that: $$\left(\frac{L}{D}\right)_{\text{max}} = \frac{1}{\sqrt{4C_{DO}k}} . \tag{10 Marks}$$ - b. A single engine propeller driven airplane have following characteristics: b = 10.91 m, $s = 16.16 \text{m}^2$, w = 1340 kg, e = 0.8, $C_{D,O} = 0.022$. Calculate the thrust required at sea level of flight velocity of 100 m/s. (10 Marks) - 3 a. For a propeller-driven airplane show that $$\left(\frac{R}{C}\right)_{\text{max}} = \frac{\eta_{\text{pr}}P}{W} - \frac{z}{\rho_{\infty}} \sqrt{\frac{k}{\text{sc}_{\text{D,O}}}} \left(\frac{w}{\text{s}}\right)^{\frac{1}{2}} \frac{1.155}{\left(L/D\right)_{\text{max}}}$$ (12 Marks) - b. Explain service and absolute ceilings. (08 Marks) - 4 a. By analytical approach show that aerodynamic relations associated with different lift to drag ratio that is $\left(\frac{C_L^{3/2}}{C_D}\right)_{max}$. (10 Marks) - b. An aircraft is flying at an altitude of 9km where $\rho = 0.467 \text{ kg/m}^3$ has the following characteristics: W = 33000kg, S = 90m², $C_{D,O} = 0.015$, K = 0.08. Find the maximum values $C_{D,O}^{3/2} = C_{D,O}^{1/2} = C_{D,O}^{1/2}$ of $$\frac{C_L^{3/2}}{C_D}$$, $\frac{C_L}{C_D}$ and $\frac{C_L^{1/2}}{C_D}$. (10 Marks) ## PART – B | 5 | a.
b. | For a propeller driven airplane, derive the Breguet range equation. A light single engine, propeller driven airplane have the following characteristics: Wing span = 10.912 m, wing area = 16.165 m ² Normal gross weight = 13127.5 N Fuel capacity of 65 gallons of aviation gasoline Power plant = one piston engine of 230hp at sea level Specific fuel consumption of 7.456×10^{-7} /m Parasite drag coefficient $c_{D,0} = 0.025$ | (10 Marks) | |---|----------|--|---------------------------------| | | | Oswald efficiency factor = 0.8 | | | | | Propeller efficiency is 0.8 | | | | | Estimate the maximum range for the above aircraft. | (10 Marks) | | 6 | a.
b. | Explain the various phases of take-off of an airplane with neat sketch. Explain in detail about the calculation of distance while airborne to clear an obstace | (10 Marks)
le.
(10 Marks) | | 7 | a.
b. | Obtain an expression for calculating the approach distance and flare distance. Write a short note on ground effect. | (15 Marks)
(05 Marks) | | 8 | a.
b. | With the help of neat sketch, explain the v-n diagram. Derive an expression for minimum turning radius. | (10 Marks)
(10 Marks) | * * * * *